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Abstract—Operating in critical environments is an extremely
desired feature for fault-tolerant embedded systems. In addi-
tion, due to design test and validation complexity of these sys-
tems, faster and easier development methods are needed. Evolv-
able Hardware (EHW) is a development technique that, using
reconfigurable hardware, builds systems that reconfiguration
part is under the control of an Evolutionary Algorithm. Recon-
figurable hardware allows EHW to change its own hardware
structure adapting itself to task and/or environment changes.
Evolvable part of these systems can also be implemented
using Artificial Neural Networks (ANNs). This research work
presents results and comparisons between Genetic Algorithm
(GA) and ANN implementations that receive combinational
circuits’ truth-tables as input and searches the minimum circuit
respecting this input truth-table. GA improved for this work’s
EHW structure achieve good execution time for tested tables
and ANN modeling presents some non-desired characteristics
with bad results.

Keywords-Artificial Neural Network; Evolvable Hardware;
Fault-tolerant systems; Embedded Systems; Genetic Algo-
rithm;

I. INTRODUCTION

Embedded system development refers to important ques-
tions: what processing power is needed? Is an operating
system necessary? What functionalities the system should
have? How amount of memory is needed? Is it a realtime
system? Where should be placed hardware accelerators to
increase performance? These questions can be answered in
an optimized way with help provided by the development
environment.

Rising complexity of embedded systems originated due to
real-time circuits constraints increased the difficulty to find
acceptable answers for proposed questions. Consequently,
alternatives to simplify projects that also raise circuit’s
robustness are becoming important.

Researches in last years developed different techniques
to design digital circuits and Evolvable Hardware (EHW)
is one of them. EHW is a reconfigurable hardware which
configuration is under control of an evolutionary algorithm.
This hardware allows systems to change their own hard-
ware structures in accord to environment or task changes.
Moreover, EHW changes project focus: there is no hardware
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development, the idea is to find a good circuit implementa-
tion (genotype) and a specification project to evaluate circuit
functionalities (fitness).

FPGA’s (Field Programmable Gate Arrays) are one of
the most used hardware to implement EHW. FPGA’s are
reconfigurable devices with high flexibility for digital circuit
design, test and validation. Nowadays, FPGA manufacturers,
as Xilinx and Altera Corporation, also develop integrate
development environments (IDEs) for rapid and low-cost
complex embedded system developments.

There are many ways to optimize circuits using their truth-
table representation. For this purpose, heuristic algorithms
have been developed and used. Some examples are the
ESPRESSO algorithm [12] and Genetic Algorithms (GA’s).
Another possibility to project digital circuits is using Artifi-
cial Neural Networks (ANN’s) to optimize truth-tables.

ESPRESSO algorithm is an heuristic method that is very
fast and give solutions near to exact minimum. The Genetic
Algorithm (GA) was largely diffused in 1989 by Goldberg
[4]. In The algorithm executes two basic steps: create an
initial population and begin the main loop that evolves this
population. The main loop consists of making interactions
with individuals (with crossover and mutation operators) and
evaluating them, evolving/selecting the best individuals ac-
cording to a fitness function. This loop is repeated until reach
the stopping criteria. With this procedure, the algorithm is
able to keep the best solutions and explore the search space
at the same time.

Artificial Neural Networks (ANN’s) are structures that
make an analogy to human brain’s operation composed by
artificial neurons that can be grouped forming networks.
These structures can be trained, to solve problems of classifi-
cation and pattern recognition for example, using supervised
or non-supervised learning algorithms. Supervised learning
algorithms need databases that contains inputs and respective
expected outputs. The knowledge of ANNSs is represented
by the value of neurons interconnections weights that are
actualized by learning algorithms, usually based on output
errors for a given input and expected output pair [13].

The main goal of this work is to verify artificial neural
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network feasibility as circuit optimizer and compare its
results with genetic algorithms results for the same proposal,
as proposed in [3].

Following sections of this paper are organized as follows:
section 2 of this paper describes some related works in the
area. Section 3 presents the method used in this work for
GA and ANN development followed by results on section 4.
Conclusions of this work are presented in section 5, future
works in section 6 and, at last, the bibliography.

II. RELATED WORKS

The areas covered by this work are: (i) Digital Circuit Op-
timization, (ii) Evolvable Hardware and (iii) Artificial Neural
Networks. After initial research it was realized that is very
difficult to find recent works joining these three research
areas. Algorithms for circuit optimization were developed
some time ago when the knowledge about computational
intelligence and computing power was not at the same level
that is today. Due to this fact (and remembering that the
most famous algorithm for this purpose (ESPRESSO [12])
is a heuristic) researches on this area shouldn’t stop.

This related works section will present some actual re-
search on evolvable hardware area, the main area of this
work, since works on these three specific areas were difficult
to find on authors’ research.

Gong and Yang [7] developed an evolvable hardware
for electronic systems control in space. These circuits are
exposed to solar radiation and are prone to faults and
environment changes. Experiment shows that the circuit
can evolve to survive in difficult conditions, presenting
fault tolerance and environment adaptability characteristics.
Teerakittikul et. Al. [10] applied evolvable hardware to
assist in the control of a four-wheeled robot when faults
were induced during experiments. Fitness evaluation time
limited chosen approach on real environments, where a fast
response time is needed. For defined fitness function, this
work achieved good results. Also in robotics, Kernbach et.
Al [14] applied evolvable hardware on swarm robots and the
hardware should deal with problems of grouping to solve
tasks.

These works presented some important applications of
evolvable hardware and some problems like scalability, fault
tolerance, environment changes and real-time constraints.
All these important features are discussed and considered
on this work’s implementation.

III. METHOD

This section presents how the genetic algorithm (GA)
and the ANN were developed. Proposed method starts with
the random generation of valid truth-tables. These truth
tables were generated considering tables of two, three and
four inputs also allowing don’t care values for its output
values (unknown values). This work is an initial study to
compare ANN’s and GA’s for circuit optimization and this
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fact justifies the small number of truth-tables’ inputs. The
number of possible tables in this case is huge (more than
four million) and this work created a database for ANN
training with 200.000 tables equally distributed in search
space. After input database generation, all these tables were
optimized with ESPRESSO algorithm and input/output pairs
(input table / optimized table) resulted on a training file. This
file was used for ANN supervised learning algorithm.

After training, developed network is ready to be com-
pared with GA and ESPRESSO algorithms. To allow a
fair comparison, a test set of truth-tables was created to
be the input of the three different techniques separately.
Optimized circuits are considered good results if they are
near or equal to ESPRESSO algorithm results. The version
of ESPRESSO algorithm executed in this work can be find
in [5]. Algorithms implementation are detailed in following
subsections.

A. Genetic Algorithm

The Genetic Algorithm was implemented with following
parameter values:

¢ Number of individuals = 50;
e Crossover rate = 100%;

e Mutation rate = 20%;

« Number of generations = 500.

For a truth-table with n input variables, each individual’s
chromosome has n positions (one for each input variable).
Each group of n positions forms a product term and, a set
of product terms forms a individual that represents a sum of
products.

In order to generate initial population, the number of
product terms that will compose each individual is randomly
chosen. Each individual can have from one to max product
terms, where max is the number of truth-table’s output
whose value is equal to 1 (true lines). After that, each
product term is filled with values that are a subset of
true lines. As the optimized circuit is always a set of true
lines using don’t cares on specific positions, the algorithm
replaces original values with don’t cares, in a maximum of
fifty percent of don’t care insertion, for initial population.
These individuals can be selected as initial individuals due
to this method of generation.

Considering that search space is composed by all possible
true lines grouping, it’s necessary to distinguish don’t cares
derived from 1 and from O to avoid individual generation
out of search space. Therefore, four symbols were used to
represent the possible values of product term variables:

¢ 0 - not(variable);

e 1 - variable;

e 2 - don’t care that replaces O;

e 3 - don’t care that replaces 1.

The crossover (Figure 1) implemented was a uniform
crossover where two individuals (P1 and P2) are selected



by tournament selection method. For each new individual’s
chromosome, parents that will pass their chromosome to
descendent (D) is randomly chosen. If one of parents is
bigger than other crossover continues but, in this case, the
choice will define if its chromosome will compose, or not,
the new individual.

Crossover - Part 1 Crossover - Part 2
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D = Product terms
Figure 1. Crossover Example

Three different types of mutation were implemented. The
first one is a bit to bit mutation, where mutation rate defines
the probability of change each position of individual’s chro-
mosomes. These changes work as follow: if position’s value
is 0, mutation changes it to 2 (don’t care derived from 0)
and vice-versa. If position’s value is 1, mutation changes
it to 3 (don’t care derived from 1) and vice-versa. This
characteristic is due to the fact that new individuals must
not be out of search space. The second and third mutation
methods work respectively inserting and deleting product
terms randomly chosen.

Algorithm stop criteria was the number of generations.
Epidemic operator was also implemented and Kkills all in-
dividuals of population, except the best one (elitism), to
replace them for new individuals. Epidemic operator is
activated when best individual of last generation is equal
to best individual of current generation, that is, when there
is no improvement in fitness value of the best individual.

Fitness function, simulating individual’s circuit behavior,
evaluates the number of correct outputs related to original
truth-table together with the size of generated circuit. Fit-
ness function, f (equation 3), is composed by two partial
functions, f; (equation 1) and f5 (equation 2). In order to
qualify individuals that hit more lines of original truth-table,
f1 was defined as in [6]:
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100 x Z 1*|xj*dj|
=0

h 5 , (1)

where ¢ is the number of system’s inputs, j is a value
between 0 and 2° — 1 that represents one combination of
inputs, x; is the output obtained by an individual for one
given combination j of inputs, and d; is desired output for
one given combination j of inputs. This function computes
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percentage of individual’s correctness compared to desired
output, that is, if the individual hits all desired output values
f1 returns 100.

Function f; was defined in order to enrich smaller indi-
viduals, and is described as follows:

1
o= p+ size’
where size is the number of product terms of evaluated
individual. Constant value added in denominator (p) is need
in order to balance f; and fo. After exhaustive tests, the p
value that achieve best results was 100 in tested cases.

Finally, minimization function f is defined as:

2

f==(fi+f), (3)

This fitness function is developed in a way that its
minimum represents the optimal optimization value.

B. Database Generation

Network proposed architecture is able to optimize circuit
truth-tables of 2, 3 and 4 input variables. ANN training
needs an input database. These example training tables
are generated by an algorithm that, from all possibilities
of tables, choose a sample group equally distributed on
search space. To find the best circuit for each truth-table
ESPRESSO algorithm was used because this algorithm is
currently known as one of the best techniques to optimize
digital circuits. Output database file is generated on FANN
[15] standard input file format. Network values are 1 and O
for circuit 1 and O values and -1 for circuit don’t care values.

C. Neural Network

The idea of circuit optimization with artificial neural net-
works came from the fact that complex circuit optimization
is a very hard task. Trained network should be able to
recognize patterns for circuits, making optimization process
not so hard and achieving a fast response time after training.

ANN algorithm was implemented as follows: as input,
network will receive the outputs for each truth table. The
choice for only the outputs is due to the fact that for each
table, all circuit input values have its corresponding output
and all tables have all possible lines. So possible inputs for
each circuit is a redundant and non-necessary information.

The input is a set of 16 integer values (maximum number
of outputs for a 4-variable truth-table). Networks output
values represents the inputs of the minimized truth-table,
because in this case each table line represents a sum of
products and output for each line is always 1. A full
optimized table, after manual verifying of tests, has no more
than 8 lines. Forty outputs for this training and validation
set is sufficient to model the outputs of expected tables.

FANN [15] implementation of artificial neural networks
was chosen for this work. FANN is a library that implements
multi-layer perceptron ANN’s and some training algorithms.



Designed network had 16 inputs, two hidden layers with
10 neurons and 40 outputs. Chosen training algorithm was
resilient back-propagation (RPROP) with FANN standard
parameters configuration. Hidden activation function was
sigmoidal symmetric with range between -1 to 1 and output
activation function was gaussian symmetric function, with
range between -1 to 1, described in [15].Training time is
approximately 3 hours on a Intel Dual Core processor.
Minimum mean square error (MSE) achieved was 2.274.

D. Nios II GA Implementation

According to the results, genetic algorithm achieved better
results comparing to ANN results. Due to this fact, GA were
implemented on a reconfigurable hardware platform Nios
IT Development Kit - Stratix II Edition develop by Altera
Corporation. This platform characteristics can be found in
[2].

Nios II is a soft-processor [11] available for development
systems in Altera Corporation’s FPGAs. This processor is
a reconfigurable processor with three different types (eco-
nomic, standard and fast) and many IP cores developed
for it implementing all functions commonly needed for
systems as communication protocols for example. Most
interesting characteristics of this processor are: the easy
hardware elements implementation as bus components or
one of the 255 custom instructions and the IDE tools that
make development fast and easy.

Implemented system works as follows: system input is a
file with a truth-table that describes a digital combinational
circuit with n inputs and one output that represents sys-
tem actual needed task; after receiving the truth-table, the
circuit optimization module search the best possible circuit
executing the genetic algorithm; after algorithm achieved
stopping criteria, this module sends only the best individual
to be configured in hardware (in this case the reconfigurable
hardware is a PAL - Programmable Array Logic); Imple-
mented PAL receives binary inputs and the output depends
on the circuit that is configured in it. DDR RAM memory
stores the executing software and data needed to execution.
PAL implementation used VHDL [16] hardware description
language and integrated to the system using Quartus II IDE
together with SOPC Builder [2].

The chosen hardware was a PAL because is a simple
circuit capable to store any boolean expression on sum
of products form in accord to its size. This hardware is
very powerful because can execute any task that can be
modeled as a digital combinational circuit as binary pattern
recognition [17].

Implemented hardware has a Nios II soft-processor, ran-
dom access memory (RAM), LCD display and the PAL.
JTAG interface is responsible for the communication be-
tween the system and the computer used by Nios II software
to read the truth-tables. CPU communicates with LCD
display and reconfigures PAL with the best individual of
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the genetic algorithm. Implemented PAL receives input data
from the four push-bottoms available on used development
kit and output is configured as a LED. Figure 2 shows
system’s hardware.

‘ g—p  JTAG Interface

Y
o
Input
cPU D
LCD - ™ PaL
I DOutput
Memaory
Figure 2. System’s Hardware

Developed software execution has three stages as showed
in Figure 3: read truth-table from file, circuit minimization
with GA and configures PAL through parallel interface
configured on Nios II soft-processor.

In accord to proposed method, after GA and ANN de-
velopment a test database was used as input for the three
algorithms in order to compare their outputs and verify
optimized circuits. Next section presents the results of each
algorithm and details of hardware implementation results.

IV. RESULTS

Presented results were obtained with test database. These
database consist in a set of truth-tables with different sizes
of inputs and amount of don’t cares and valid values. All
types of tables were used for tests, some common test tables
(AND, OR, XOR (Figure 4)) and other more complex tables.
Figure 4 presents in Input Tables column truth-tables of
AND, OR and XOR gates. In column Optimized Circuit

BEGIM

}

Read Truth-Tahle

L

Circuit hMinimization

-

Configure PAL

Figure 3. Software’s Flowchart



are presented found circuits by ESPRESSO, GA and ANN
methods.

Input Tables Optimized Circuit
input | output] ESPRESSO GA ANN
0 i 0 SRR
AND o2 . -
10 ]
11 1
oo 1] 1- 1 =
OR 01 1 A -1 -
10 1
11 il
oo 1] 10 10 : =
XOR 01 i 01 01 o
10 1 ;
11 1]
Figure 4. Results

Optimized circuit’s representation is the same of individ-
ual representation: each line represents a sum of products
and each sum of products are connected by OR gate. In this
way, found circuit by ESPRESSO and GA for XOR truth-
table is similar to Figure 5.

Bl |
not A
B
not B
Figure 5. Circuit of XOR Gate

Test database generation used the same algorithm of
ANN training database generation. The three algorithms
received these inputs. Their outputs and execution times
were compared.

Developed genetic algorithm for a max value of four
inputs, is almost instantaneous to find the optimized table.
This result is very near to ESPRESSO execution time,
and output optimized truth-tables were identical compared
to ESPRESSO outputs. Previous work’s [3] genetic al-
gorithm was slower than new genetic algorithm and the
new algorithm can optimize more complex truth-tables on
acceptable time. As highlighted in [3], these results work on
an important part of EHW with GA, the scalability.

On network validation and tests, some problems were
found. The results of the neural network for validation
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tables and test tables were all don’t care values (< 0),that
means, there was no circuits for any input. All results
were only wires without gates. Analyzing database, when
don’t care values were set to -1, tables of two, three and
four inputs were completed with don’t care values for non
existing line outputs.This characteristic is due to the fact
that network was prepared to work with different sizes
of tables that needed different amounts of input neurons,
and the number of neurons is an static value fixed as the
minimum required amount. This fact has tended network
output values all for don’t care values, because there were
lots of don’t care values completing tables of 2 and 3 inputs.
Threshold approach for interpreting this values were not
efficient because outliers were common.

Nevertheless, ANN output values for different input tables
were different, but changes were minimum (0.001 mag-
nitude). Small changes in this case can occur because of
small number of training tables (in this case were 200.000
examples) or small amount of information on training tables.

Hardware synthesis results are: system complete hardware
used 16% of FPGA logic elements and 45% of 1/O pins.
PAL used 11% of logic elements itself. Execution time
for implemented hardware was the stopping criteria for
previous implementation algorithm [3], 10s. With the same
stopping criteria, the improvement is the fact that in the same
execution time the soft-processor with the new algorithm
could achieve the optimal results for more complex tables.
This fact is relevant because this new algorithm presents an
improvement compared to previous algorithm on a relevant
question of the area , scalability, also in hardware imple-
mentation.

V. CONCLUSIONS

After analyzing execution times and results, GA achieved
better results (equals to ESPRESSO results) than ANN
results. One important thing is that with the good results,
authors believe that genetic algorithm can be modified in
order to solve more complex tables and, due to this fact,
be applied to a larger number real problems with real-time
constraints. The fact that GAs have a population of possible
solutions allows the algorithm to find better solutions than
an algorithm that gives always the same solution for a
determinate input as ESPRESSO and ANN. Unlike ANN,
GA also have de advantage of being input-size independent.

Proposed method also showed to be an acceptable method
for database generation, that is necessary to use ANN for
this purpose and to compare results of algorithms. Results
of ANN showed that for this modeling: (i) for each input
variable number, one network should be projected because
don’t care values on each non existing lines has a large im-
pact on output values, (ii) example tables should be balanced
after generation in order to choose for training tables that
contains more relevant information and (iii) modeling should
be changed if the idea for the network is to accept a large



different number of inputs. The way that implemented ANN
was modeled resulted in only don’t cares outputs. This fact
does not allow its use as a circuit optimizer, unlike GA.

About hardware implementation, chosen development kit
is a good choice for this kind of implementation because of
development tools. A lot of soft-processors or other hard-
ware devices can be easily added to developed system with
desired characteristics. SOPC Builder system [2] automat-
ically integrates system components joint with debugging
and simulation tools that allows system validation before its
implementation.

The fact that Nios II processor has a Hardware Abstraction
Layer (HAL) allows easy device access with ANSI C func-
tions from software. HAL also supports, with a consistent
interface, many devices like flash memories, file systems,
DMAs, ethernet controllers and other custom devices that
can be included in it by the designer [2].

VI. FUTURE WORKS

In order to get better results for complex tables, genetic
algorithm should be modified and more tests should be done.
Hardware implementation of this new algorithm on a FPGA
can show if it can be applied on real situations. This new
genetic algorithm is only a modification of previous work
algorithm [3], so it is ready to be implemented in hardware.
For the ANN, the study of the impact caused by parameter
modifications for training algorithm is indicated together
with new modelings. Hardware implementation of ANN,
after modifications, is fairly simple because it operates as
a black box after training and can be seen as a table.

More efficient fitness techniques that avoid evaluating the
same truth-table lots of times, decreasing fitness execution
time, could be implemented as Dynamic Programming and
the technique proposed in [9]. Multi-objetive genetic algo-
rithms can be implemented in order to evaluate two or more
conflicting fitness objectives.

To improve execution time, genetic algorithm functions
can be implemented in hardware and added to Nios II
processor as custom instructions [8] or using the HAL. Only
hardware implementation of fitness can increase significantly
execution time [1].

Scalability improvements can be done developing a hard-
ware/software co-design version for this genetic algorithm in
order to decrease execution time and allow complex tables to
be executed in an acceptable time. Also other reconfigurable
hardwares can be implemented, different from PAL, in order
to compare their performance.

Nios II system allows multi-processor platforms to be
implemented so this hardware could also be evaluated with
parallel implementation of the software.
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